STRONG PREFERENCES AFFECT THE ROBUSTNESS OF
PREFERENCE MODELS AND VALUE ALIGNMENT
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TL; DR

= We study the robustness of value alighment by analyzing the
sensitivity of preference models, a core component of value

alignment.

= We show that under the Plackett-Luce model, preference

probabilities can change significantly due to
the learned preference distribution.

small changes in

= We characterize this sensitivity: it occurs with strong
preferences with probabilities close to 0 and 1.

Introduction

We cannot Specify all the Preferences
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Specified in Training Samples

Unspecified

Models could Learn Slightly Different Preferences
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Question We Ask

How sensitive a preference probability is

with respect to changes in other preference probabilities?
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Assumptions for Pairwise Preference Models

Asm 1: Preference probabilities only depend on score differences

Dij = p(y; > )’j) = g(s; — Sj)»g e R - (0,1)

Asm 2: g(x) is strictly increasing & (Si —s; 1
Asm3: lim g(x) =0, liI_El glx) =1
X—>+ 00
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Asm4:Vx ER,g(x) + g(—x) =1 p;;+p; =1

Asm 5: g(x) is continuously differentiable

Special case: Bradley-Terry model ggr(x) =

1
1+exp(—x)
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= M -sensitivity: h(x) is M-sensitive to x; at x’ if

= M-sensitivity region of h: Qy(h, x;): {x’ € Dom(h):

Analysis
Measuring Sensitivity

Consider a multivariable function h(x) = h(xq, x5, ..., X1).

dh

a_xi =x'| > M.
dh
2 || > M},
6Xi X=X

Analysis for Pairwise Preference Models

Lemmal The unspecified p;; is a function of p;; and py;:
_ _ _ _ _ _ -1 -1 _
Pij = g(Si Sj) = Q(Si Sk + Sk Sj) =49 (g (Pix) + 9 (ij)) = pij(pik:pkj)
Theorem1l Forall M > 0, there exists 0 < po,p,’{j < 1, such that pij(pik,p,'{j) is M-
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sensitive to p;y, for all pg < py, < 1. Similarly, there exists 0 < py,py; < 1, such that
Dij (pik,p,'(’j) is M-sensitive to p;;, forall 0 < p;;, < p;.

" p;j can be arbitrarily sensitive to p;, when p;;, (and py ;) are close to 0 or 1.

= When is B-T model sensitive?

Characterizing Sensitivity for the Bradley-Terry (B-T) Model
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= When is P-L model sensitive? N
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a, f are some constants ¥;,¥; are functions of (M, pg,u)v)
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Extension to the Plackett-Luce Model

Let O = {04, 0,, ..., 0 } be the set of all the options. Let w = (owl, Ogyyr ee owK) S
Perm(0O) be a preference over the options. Under the Plackett-Luce Model:

(K)

Lemma5 Letw bea K-tuple preference. Then p,, ~, under the Plackett-Luce Model, can
be written as a function of p(ﬂ,’fjv/p(ﬁ,’z, wherel < u,v < K, w,, = (w;,;,; w,, w,) and
Wy, = (W, w,, wy,), and w;,, is any (K — 2)-permutation of O\{w,, w, }:
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Comparing B-T and P-L Models
Theorem?2 ForallM > 1and K > 2:

A(om(pET pET)) > A (QM (s, PEL, ))

Takeaways

= Preference models with similar behaviors on the training set may assign
significantly different probabilities to unseen preferences.

= Minor changes in the data distributions within the training set may lead to
significant changes in the learned preference models.

= P-L models (with K > 2) are more robust than B-T model.
= Not just for value alignment, but wherever PM is used (e.g., Chatbot Arena) J

e Experiments )

Strong Preferences are not Uncommon

Frequencies of preference probabilities assigned by reward models on Anthropic/hh-rl1hf

Dl Frequency of p,,;
Llama-3.1-Nemotron-70B-Reward-HF reward-model-deberta-v3-large-v2
(0.00,0.05) 1,184 22
0.05,0.10) 363 62
0.10,0.90) 3,636 7037
0.90,0.99) 1,574 1,264
0.99, 1.00) 1,795 167
Total 8,552

Sensitivities of Preference Models Manifest in Value Alignment

= Synthetic dataset: O = {dog, cat, bird} 2 three preferences
= Set p7, to be 0.99 or 0.5 % strong or moderate preferences
= Vary p5, from 0 to 1, resulting in changes in DPO-learned p3-

= Check the learned pi,, does it change proportionally to p5?
= Studied LLMs: L1ama-3-8B-Instruct, zephyr-7b-alpha
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pr,» =0.99: Despite small/no changes in p3s, a significant change in p1; occurs.

D D =4 D _ . D _ = D _ . D _ =4
Do = p(dog,cat) = OL)O Pia = p(dogblrd) = OL)O p12 - p(cat_,dog) T OOO
1.0 1

1.0 1

0.8 1 0.81

0.6 1 0.6 1

s

0.4 1 0.4

= L - L
P13 = Pcat bird)

: i
L _ L L _ L

0.2 1 AT Py = Pcatbird) 0.2 1 T = p(dog:bird) N

per - pLd cat per - chat.do
0.0 (dog.cat 0.0 b a Z (cat dog)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
D _ D D _ D D _ D
P23 = P(cat,bird) P23 = P(bird.cat) P23 = P(dog,bird)

pr, =0.50: p1; tends to change proportionally to p2,.




	Slide 1

