STRONG PREFERENCES AFFECT THE ROBUSTNESS OF PREFERENCE MODELS AND VALUE ALIGNMENT

Ziwei Xu

Mohan Kankanhalli

TL; DR

- We study the robustness of value alignment by analyzing the sensitivity of preference models, a core component of value alignment.
- We show that under the Plackett-Luce model, preference probabilities can change significantly due to small changes in the learned preference distribution.
- We characterize this sensitivity: it occurs with strong preferences with probabilities close to 0 and 1.

Question We Ask

How sensitive a preference probability is with respect to changes in other preference probabilities?

Assumptions for Pairwise Preference Models

Asm 1: Preference probabilities only depend on score differences $p_{ij} = p(y_i \succ y_j) = g(s_i - s_j), g \in \mathbb{R} \rightarrow (0,1)$ **Asm 2**: g(x) is strictly increasing $\Leftrightarrow (s_i - s_j \uparrow \Leftrightarrow p_{ij} \uparrow)$ Asm 3: $\lim_{x \to -\infty} g(x) = 0$, $\lim_{x \to +\infty} g(x) = 1$ Asm 4: $\forall x \in \mathbb{R}, g(x) + g(-x) = 1 \Leftrightarrow p_{ij} + p_{ji} = 1$ **Asm 5**: g(x) is continuously differentiable

Special case: Bradley-Terry model $g_{BT}(x) = \frac{1}{1 + \exp(-x)}$

Consider a multivariable function $h(\mathbf{x}) = h(x_1, x_2, ..., x_L)$. • *M*-sensitivity: h(x) is *M*-sensitive to x_i at x' if $\left|\frac{\partial h}{\partial x_i}\right|_{x=x'} > M$. • *M*-sensitivity region of $h: \Omega_{M}(h, x_{i}): \left\{ \mathbf{x}' \in \text{Dom}(h): \left| \frac{\partial h}{\partial x_{i}} \right|_{\mathbf{x}=\mathbf{x}'} \right| > M \right\}.$

Analysis for Pairwise Preference Models

Lemma 1 The unspecified p_{ij} is a function of p_{ik} and p_{kj} : $p_{ij} = g(s_i - s_j) = g(s_i - s_k + s_k - s_j) = g(g^{-1}(p_{ik}) + g^{-1}(p_{kj})) = p_{ij}(p_{ik}, p_{kj})$ **Theorem 1** For all M > 0, there exists $0 < p_0, p'_{kj} < 1$, such that $p_{ij}(p_{ik}, p'_{kj})$ is Msensitive to p_{ik} for all $p_0 < p_{ik} < 1$. Similarly, there exists $0 < p_1, p''_{ki} < 1$, such that $p_{ii}(p_{ik}, p_{ki}'')$ is *M*-sensitive to p_{ik} for all $0 < p_{ik} < p_1$.

• p_{ij} can be arbitrarily sensitive to p_{ik} when p_{ik} (and p_{kj}) are close to 0 or 1.

C Back to the example: $(p_{ik}^{A}, p_{kj}^{A}) = (0.9999, 0.0200) \in \Omega_{48}(p_{ij}^{BT}, p_{ik}^{BT}) \quad (p_{ik}^{B}, p_{kj}^{B}) = (0.9801, 0.0200) \in \Omega_{12}(p_{ij}^{BT}, p_{ik}^{BT})$

Extension to the Plackett-Luce Model

Let $\mathcal{O} = \{o_1, o_2, \dots, o_K\}$ be the set of all the options. Let $\boldsymbol{\omega} = (o_{\omega_1}, o_{\omega_2}, \dots, o_{\omega_K}) \in \mathcal{O}$ $Perm(\mathcal{O})$ be a preference over the options. Under the Plackett-Luce Model:

Lemma 5 Let $\boldsymbol{\omega}$ be a K-tuple preference. Then $p_{\boldsymbol{\omega}}^{(K)}$, under the Plackett-Luce Model, can be written as a function of $p_{\omega_{uv}}^{(K)}/p_{\omega_{vv}}^{(K)}$, where $1 \le u, v \le K$, $\omega_{uv} = (\omega'_{uv}; \omega_u, \omega_v)$ and $\boldsymbol{\omega}_{vu} = (\boldsymbol{\omega}_{uv}'; \omega_v, \omega_u)$, and $\boldsymbol{\omega}_{uv}'$ is any (K - 2)-permutation of $\mathcal{O} \setminus \{\omega_u, \omega_v\}$: (K) $\mathbf{\Gamma}^{K-1}$

(see Eqn. 11)

$$p_{\boldsymbol{\omega}}^{(\mathbf{K})} = \prod_{u=1}^{K} \frac{1}{1 + \sum_{v=u+1}^{K} p_{\boldsymbol{\omega}_{uv}}^{(K)} / p_{v}}$$

When is P-L model sensitive?

$$0 < p_{\omega_{uv}}^{(K)} < \frac{\beta}{4\alpha M}, \gamma_1 - \gamma_2 < p_{\omega_{vu}}^{(K)} < \gamma_1 + \gamma_2$$

 α, β are some constants γ_1, γ_2 are functions of $(M, p_{\omega_{uv}}^{(K)})$

$$A\left(\Omega_{M}\left(p_{\boldsymbol{\omega}}^{(K)}, p_{\boldsymbol{\omega}uv}^{BT}\right)\right) = \frac{\beta^{2}}{6\alpha M^{2}}$$

Area of the region

Analysis

Theorem 2 For all M > 1 and K > 2:

- significantly different probabilities to unseen preferences.
- significant changes in the learned preference models.
- P-L models (with K > 2) are more robust than B-T model.

Strong Preferences are not Uncommon

Frequencies of preference probabilities assigned by reward models on Anthropic/hh-rlhf

p_{wl}	
	Llama-3.1-Nemotron-
$egin{aligned} (0.00, 0.05) \ [0.05, 0.10) \ [0.10, 0.90) \ [0.90, 0.99) \ [0.99, 1.00) \end{aligned}$	1,184 363 3,636 1,574 1,795
Total	

Sensitivities of Preference Models Manifest in Value Alignment

- Studied LLMs: Llama-3-8B-Instruct, zephyr-7b-alpha

Comparing B-T and P-L Models $A\left(\Omega_{M}\left(p_{ij}^{BT}, p_{ik}^{BT}\right)\right) > A\left(\Omega_{M}\left(p_{\boldsymbol{\omega}}^{(K)}, p_{\boldsymbol{\omega}_{uv}}^{BT}\right)\right)$

Takeaways

Preference models with similar behaviors on the training set may assign

Minor changes in the data distributions within the training set may lead to

Not just for value alignment, but wherever PM is used (e.g., Chatbot Arena)

Experiments

• Synthetic dataset: $\mathcal{O} = \{ \text{dog, cat, bird} \}$ \mathcal{O} three preferences • Set p_{12}^D to be 0.99 or 0.5 $rac{P}{P}$ strong or moderate preferences • Vary p_{23}^D from 0 to 1, resulting in changes in DPO-learned p_{23}^L • Check the learned p_{13}^L , does it change proportionally to p_{23}^L ?

 p_{12}^D =0.50: p_{13}^L tends to change proportionally to p_{23}^L .